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Unraveling effects of disorder on the electronic structure of SiO, from first principles
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We present a first-principles systematic study of the electronic structure of SiO, including the crystalline
polymorphs « quartz and S cristobalite, and different types of disorder leading to the amorphous phase. We
start from calculations within density functional theory and proceed to more sophisticated quasiparticle calcu-
lations according to the GW scheme. Our results show that different origins of disorder have also different
impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the

size of the mobility gap in each case.
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In amorphous semiconductors and insulators the free-
carrier transport is directly related to the so-called mobility
gap, defined as the energy difference between mobility edges
separating localized states tails from extended band states.'
The mobility edges are thus the relevant energies for the real
values of band offsets at interfaces, and the mobility gap
plays for the amorphous material the same role as the elec-
trical energy gap in crystalline systems. From the experimen-
tal side, the values reported for the measured mobility gap of
amorphous silica (a-SiO,) exhibit a broad dispersion. How-
ever, experimental studies agree in that they do not show
marked differences between a-SiO, and a quartz,?? the most
common SiO, crystalline polymorph. This experimental evi-
dence is however counterintuitive in that the density of
a-SiO, is smaller than that of quartz, and we should thus
expect a closure of the gap as for other tetrahedral com-
pounds. On the other hand, besides the technological interest,
amorphous forms of silicon dioxide appear as natural proto-
types for network-forming disordered materials. The theoret-
ical interpretation of transport and optical properties of amor-
phous semiconductors or insulators in terms of mobility
edges' and localized (Urbach) tails derives from the pioneer-
ing ideas of Anderson, Mott and Cohen,*’ and we could
suppose that the opening of the gap of a-SiO, is totally com-
ing from extreme localization of band-edge states, i.e., for-
mation of Urbach tails. Most theoretical results so far that
lead to such interpretations addressed model systems through
simplified Hamiltonians containing parametrized terms to ac-
count for the disorder contribution; calculations on model
structures  obtained through tight-binding mean-field
treatments®® or ab initio density functional theory (DFT)
methods'® and applied to the study of the electronic structure
of amorphous silica are also usually compared to crystalline
« quartz, and suggest a smaller mobility gap. First-principles
beyond-mean-field methods, based on many-body perturba-
tion theory (MBPT), have been applied more recently to the
study of optical properties separately for the crystalline sys-
tems quartz'! and cristobalite.!>!3

In the present work, we go beyond the previous studies by
investigating through the same methodology different crys-
talline polymorphs, « quartz and B-cristobalite (Fd-3m), and
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several amorphous models of SiO, having different kinds
and degrees of disorder. We start from the generation of rea-
sonably large silica models and heated crystal structures
through classical simulations'# of quench from the melt, pro-
ceed through full first-principles electronic structure calcula-
tions within ab initio DFT formalism, and reach the calcula-
tion of the quasiparticle electronic structures within MBPT
by means of the GW approach. '

We distinguish!6 thermal disorder, where the connectivity
of the crystalline-phase network is preserved, and just bond
lengths and angles are affected, from topological disorder
where also the number of atoms in a connectivity ring is
affected. We find that at the fundamental gap edges the two
kinds of disorder mainly touch the upmost valence band, and
lead to different effects. Still at the mean-field level, we see
a slight gap closing in the thermal, and a strong gap opening
in the topological disorder case. For the more realistic well-
quenched samples, we find just a small spreading of Urbach
tails at the valence-band edge: the effect on the size of the
gap is mostly brought about by band flattening and narrow-
ing due to orbital localization. This orbital localization leads
also to different many-body corrections on the level energies,
which are larger for the disordered systems than for the co-
herent crystalline phases, and contribute to the final almost
coincidence of the mobility gap value for a-SiO, and «
quartz.

We use a 108 atom supercell for crystalline o quartz, and
the 24 atom primitive cell for B cristobalite. To distinguish
between topological and thermal-like disorder, we also in-
vestigate the heating of the cristobalite crystal up to 300 K,
which provides a test case where only short-range disorder
associated to small fluctuations plays a role, and in this case
we adopt a 192 atom supercell. The amorphous systems are
investigated through four a-SiO, models, that are all made of
connected SiO, tetrahedra: at the short-range scale, differ-
ences between the two crystalline and the amorphous sys-
tems come from bond-angle and bond-length fluctuations,
while the medium-range structure is governed by the connec-
tivity of the SiO, network itself.'” We performed molecular-
dynamics (MD) simulations of quenching from a melt using
a semiempirical ionic potential'®!? in order to generate four
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FIG. 1. (Color online) Topological structure of the WQI silica
model: the ring-size distribution is made evident by recognizing the
presence of 3- to 6-membered rings, respectively, in panels (a)—(d).

108 atom glasslike configurations for silica with different
degrees of disorder. Two of them are “well-quenched” (la-
beled WQI and WQ2), since they have been prepared fol-
lowing the procedure described in Ref. 14 with an effective
quench rate of 2.6 X 10'3 K/s: they are well connected in the
sense of Zachariasen;!’ the other two (“fast-quenched,” la-
beled FQ1 and FQ2) have been prepared just by standard
procedure with an effective quench rate of 1.1 X 10" K/s.
These latter two models show different network characteris-
tics: the first (FQ1) matches the well-connected network
definition, while the other has a defective network with an
edge-sharing tetrahedra (FQ2). As shown in Fig. 1, the
medium-range structure pertaining to the amorphous silica
models generated by our MD simulations presents a variety
of small-ring connections, including 3- and 4-membered
rings, which is also consistent?® with the interpretation of
Raman experiments. All structures have been fully relaxed,
through first-principles DFT calculations in the local density
approximation (LDA). Our calculations were performed?!
using norm-conserving pseudopotentials and plane-wave ex-
pansions up to 70 Ry. The many-body electronic structure for
each model was then obtained by performing nonself-
consistent GW calculations.??>~?

One of the key concepts for understanding the role of
disorder in amorphous semiconductors and insulators is the
distinction between localized and extended electronic states,
which is still under debate.?® We here quantitatively describe
localization by means of a new tool, i.e., a normalized self-
interaction (|SI|). The self-interaction is the Coulomb

interaction between an electronic state and itself
(=‘l/ IS —qs“(r)d)x(”rr)?;,(llr J4lr )d3rd3r’), and we further extend this

concept to systems modeled through periodic boundary con-
ditions by dividing the usual SI by the SI of a plane wave
normalized in the corresponding cell. This normalized SI
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FIG. 2. (Color online) DOS and normalized self-interaction for
the DFT-LDA states of (a) cristobalite Cy and quartz at 0 K, (b)
cristobalite at 0 K, at 300 K Csq and the WQI silica model, and (c)
silica models FQI, FQ2, and WQ2. The DOS are plotted with a
Gaussian broadening of 0.27 eV, and have been aligned by the
bottom of the valence band. The reported [SI| is averaged over
energy intervals of 0.09 eV.

provides us with an absolute quantification of localization,
which is independent of the energy, and can be used to com-
pare the localization in systems with different unit-cell vol-
umes [a fully delocalized state will always exhibit a [SI]
value of one, while a completely localized state, a Dirac’s
delta, will have a divergent |SI| (Ref. 27)].

We examine first in detail the DFT-LDA results. We show
in Fig. 2 the density of states (DOS) and corresponding |SI]|
for (a) the two crystals at 0 K; (b) for the systems with the
same density, i.e., cristobalite at 0 and 300 K, and the WQ1
system; and (c) for the WQ2, FQI and FQ2 systems. The
density of all the investigated systems is reported in the first
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TABLE 1. Density, HOMO-LUMO gap (Ep;), and mobility gap (E,) of crystalline and glass models
within the DFT-LDA and GW approaches: a quartz (Q) and B cristobalite at 0 and 300 K (C, and Csy);
well-quenched (WQ), and fast-quenched (FQ) amorphous models, see text. Densities are given in g/cm?,

energies in eV.

Q Co Cs00 WQl wQ2 FQI FQ2
Density 2.65 2.20 2.20 2.18 2.27 2.44 2.40
Ej; (DFT) 5.9 5.4 5.3 5.6 5.6 5.3 5.2
E,, (DFT) 5.9 5.4 5.3 5.7 5.7 5.6 55
E, (GW) 9.4 8.9 9.6 9.4 9.2 9.1
A, 35 35 3.9 3.7 3.6 3.6

row of Table I. Figure 2 shows that all the DOS exhibit a
roughly similar shape, with not enough information on the
amorphous or crystalline character of the system except for
the dip in the DOS between bonding and nonbonding states
(at about —=5.0 eV) that is less pronounced in the amorphous
case; this is also observed experimentally?® according to the
degree of frozen-in disorder. The behavior of the |SI| coupled
to the DOS is however very elucidative. Indeed, our [SI|
results for the amorphous models show that the states ener-
getically located at the dip (related according to Ref. 28 to
the local fluctuations in the short-range order, such as bond-
angle distortions and bond dimerization) have a strongly lo-
calized character. Coming to the top of the valence band, the
analysis of |SI| reveals that the fast-quenched models clearly
exhibit highly localized tails, with a concentration of the or-
der of 10°~10* ppm.? Moreover, a careful inspection of |SI|
data reveals that the physics at the band edge is rather com-
plex and system dependent, which precludes a widespread
definition of mobility edges to be applied to any disordered
sample. For example, for silica our results show that disorder
does not produce any localized state in the lower conduction
bands, while strongly influencing the valence bands: the 2p
oxygen states are significantly perturbed by disorder, differ-
ently from those silicon-related states involved in generating
lower conduction states. The absence of localization for un-
occupied states was already suggested in Ref. 20, and we
remark that our |SI| results allow to recognize that the
LUMO states for these systems are completely delocalized:
their very nature is unaffected by any kind of disorder.
Focusing at the upper valence band, we see that overall
the value of |SI| for the amorphous samples is higher than for
the crystalline phases, including the thermally disordered
cristobalite.’® We calculate the mobility gap as the energy
difference between conduction and valence mobility edges,
defined as the first state having a |SI| value larger than 1.12,
i.e., the largest |SI| value found at the same band for cristo-
balite, the crystalline reference of a-SiO, with the same den-
sity. The DFT and GW results for the mobility gap for all
systems are summarized in Table I, where the corresponding
density and highest occupied molecular orbital lowest unoc-
cupied molecular orbital (HOMO-LUMO) gap within DFT
are also reported (for a crystalline system at OK the DFT
mobility and HOMO-LUMO gaps coincide). In the case of
ordered systems, both the DFT and the GW calculations in-
dicate the closure of the direct gap for lower-density systems,
i.e., cristobalite wrt quartz. This result is in agreement with

the well-known interplay between gap and density in crys-
talline semiconductors and insulators, and it also corresponds
to the trend extracted from experiments addressing the opti-
cal gap of tetrahedral systems.3' The comparison between C,
and C;(, shows that thermal disorder induces a slight nar-
rowing of the gap, without any particularly strong localiza-
tion of the band-edge states. Passing now to the effect of
topological disorder, Table I indicates that the mobility gap
of well-quenched amorphous systems, calculated through
DFT or GW, is always larger than the corresponding-density
crystal gap. A similar behavior has been observed in Ref. 9
opposing the effect of weak and strong disorder for model
tetrahedral systems. The case of fast-quenched samples is
more complex, since the value of the density by itself is not
enough to describe the morphology effect; the systems we
analyze here are highly inhomogeneous, and lower-density
phases coexist with higher-density defect regions. However,
the DFT mobility gap is again larger than that of cristobalite,
and we find a wider energy interval of localized tails com-
pared to the well-quenched samples.

The inclusion of many-body corrections produces the ex-
pected opening of the gap. The self-energy correction turns
out to be exactly the same for the two crystalline systems
(3.5 eV). A rationale for this behavior can be provided by
analysis of the structural features of the two structures: ac-
cording to the network characterization of King,*? cristo-
balite is composed by 6-membered SiO, rings, while quartz
displays 6- and 8-membered rings. Therefore, the insensitiv-
ity of the GW correction with respect to the cases of quartz
and cristobalite suggests that the spatial range of the domi-
nant nonlocal interactions controlling the gap is of the order
of the 6-membered ring radius. Coming now to the amor-
phous phases, Table I shows that they all experience a larger
correction, of up to 3.9 eV, owing to the sensitivity of the
GW self-energy to the nonlocal-density fluctuations related
to their topological disorder; as shown in Fig. 1, the silica
models generated by our MD simulations present a variety of
ring connections, including 3- and 4-membered rings, and
the presence of small-numbered rings induces an enhance-
ment of the local atomic density in the medium-range scale,
which differentiate a-SiO, from the crystalline phases. The
experimentally observed identity of the electronic properties
of quartz and a-SiO, is not really captured by the DFT cal-
culations, however the different corrections affecting crystal-
line and amorphous phases allow us to recover the agreement
with the experiments indicating that a-SiO, and quartz
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phases are indistinguishable in spectroscopic experiments.
Their mobility gap is around 9.4-9.6 eV,* within the re-
ported experimental range (8.8—11.5 eV?3#) and in very good
agreement with, for instance, photoconductivity measure-
ments 9.3 eV.* We also remark that the difference between
GW corrections for crystalline and amorphous systems pre-
cludes an a priori use of crystalline shifts (within scissor
shift approximations) for describing many-body contribu-
tions in disordered systems.

In summary, we succeeded in defining a consistent crite-
rium to define the mobility gap of amorphous silica, based on
the concept of normalized self-interaction, and in calculating
it from first principles: our result is in very good agreement
with matching experiments, and this is only possible through
the explicit inclusion of many-body effects in the description
of the electronic properties of crystalline and amorphous sys-
tems. The systematic character of our study allows us to
follow the effects of atomic- and electronic-density fluctua-
tions on the electronic structure, in particular the size of the
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mobility gap, and to discriminate the specific contribution of
the different kinds of disorder: in the short-range scale, ther-
mal fluctuations affecting bond distances and angles induce a
gap narrowing, while the stronger, topological disorder tends
to widen it. As expected on the basis of the Anderson model,
we find that any kind of disorder may induce electron local-
ization at band tails, with a localization that growth exponen-
tially within the tails: however, these localized states hardly
influence the mobility gap for realistic systems.
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